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The problem of identifying the input of a system governed by a "semi-linear" evolution equation of parabolic type, based on the 
results of observations subject to undefined disturbances, is investigated. Estimates of the input, optimal in the sense of the so- 
called H~-criterion, are obtained. The information function of the system--the value function in an appropriate optimization 
problem--is evaluated. The relations between the information function and information sets are indicated. Optimality principles 
adequate to the proposed formulations of the problem are formulated and the corresponding dynamic programming equations 
are derived. Procedures for regularizing the problem, based on evolution equations of the input estimates, are proposed for the 
heat-conduction equation. © 1999 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Let f2 be a bounded domain in R ~, n i> 1; O~ = F e C 2. Consider the "semi-linear" evolution equation 

u t - Au + f ( u )  = b(v (t), t), x e ~,  t e (0, O) (1.1) 

u(~, t)=0,  ~ r ,  t e (0 ,O] ;  u ( x , O ) = u o ( x ) ,  x e f ~  

where A is the Laplacian and t~(t) is a "control"; the admissible controls are functions 0(.) e L2(0, O; 
V) such that 

t)(t) • V for a.e. (almost all) t e [0, O], 

where V is a closed bounded convex subset of a Hilbert space V. The function b(u, t), t) e V, t e [0, 0 ]  
satisfies a Lipschitz condition as a function of t) and is continuous in t, with b(0, t) = 0. As to the function 
f ( s ) ,  s e R ,  the following assumptions are made. 

A s s u m p t i o n  1.1. We assume that 
1. f(.) e C I ( R ) ,  

2.f(o) = o, 
3. f satisfies the growth condition 

I f ( s  I ) - f ( s  2)  - f ' ( 0 ) ( s  I - s 2) I< C(I s I I q-I + 1 s x I q-I ) I s I - s 2 I, ~/s I, s 2 ~ R 

for some C > 0 and for q such that 1 < q <<- (n + 4)/n.  

It is well known [1-4] that, under the above assumptions, one can prove a local theorem that guarantees 
the existence °f  Y > 0 such that' if II u° IIL2f~), + II ° ( ' )  IlL2 ° o ~  (,  ;%7-< y, then Eq. (1 1) has a solution, w h i c h .  
is moreover unique in the class C([0, O]; L~(f2)) ~ L'(0, O; Hl(f~)) and satisfies a Lipschitz condition 
with respect to u0, o( .  ). An element u(., t) e L2(f2) will be called the "state" of system (1.1) at time t. 

Let us assume that u0 and o( .  ) are not known in advance but that the system has a solution u(x,  t) 
in the interval t e [0, T], T ~< O. It will be assumed that the accessible information about the solution 
is obtained by virtue of an equation of measurements 

y( t )  = g(u(., t), t + ~(t), t ~ [0, T] (1.2) 

where y ( t )  e R ~ are the measurement data at time t, {(t) e R m is the measurement noise and g(.) e 
LZm(0, T); g(.,-) ~ Cm(LZ(f2)  x [0, 7]) is a given m-dimensional function. We putz  = {Uo, u(.), {(-)}; we 

tPrikl. Mat. Mekh. Vol. 62, No. 6, pp. 899-912, 1998. 

831 



832 A.B.  Kurzhanskii and I. E Sivergina 

call an element z ~ Z - L2(~) (~ L2(0, T; I 0 (~D L2(0, 7) an "input" to system (1.1), (1.2) ( ~  denotes 
the direct sum of Hilbert spaces). Define Z C_ Z to be the set of all inputs in which o(t) e V for almost 
all t. We will also use the following notation 

w = {u 0,v (.)}, w ~ W - L2(~) ~ L2(0, T; V) 

W = { w ~  WIv(t)~ V for almost all t~  [0, T]} 

Let u(x, t; w) denote the solution of Eq. (1.1) corresponding to the initial state Uo and the control t~(. ) 
in the vector w = {Uo, o(. )}. 

The problem is to estimate the "input"z e Z based on the "output 'y( .  ) e L2m(0, 7). In some applica- 
tions, this inverse problem is conventionally referred to as "inverting" the system. 

2. T H E  H ® - A P P R O A C H  AND M I N I M A X  E S T I M A T I O N  OF T H E  I N P U T  

We define a functional in the input space Z of system (1.1), (1.2) by 

T 

F(z, T) = o~(u o ) + f fo (u (t), ~(t), t)dt (2.1) 
0 

The continuous functionals a(u0), Uo ~ L2(f~) andf0(t~, ~, t), {o, ~, t} e Vx  R m x [0, 7] are such that 
F(., T) is strictly convex and coercive for all T e (0, O]; the latter means that, for some Co = 
c0(T) > 0, we have F(z, T) t> c011zll 2, VZ ~ Z. 

Definition 2.1. An H~-estimate of the input of system (1.1), (1.2) relative to a criterion F based on 
observationsy(t),  t ~ [0, T] is an element z* = z*(y) ~ Z such that the quantity ~:2 = ~:2(y), satisfying 
the inequality 

for all z e Z such that 

IIz- z.112 _< ×2F(z, T) (2.2) 

y ( t )  = g(u(. ,  t; w) ,  t )  + ~( t ) ,  t ~ [0, T]  (2.3) 

is the least of all possible such elements. 

Remark 2.1. The optimality criterion (2.2) is related m problems investigated in what is known as "H®-optimal 
control theory"--a deterministic approach to the investigation of optimum problems in the presence of disturbances 
(see, for example, [5--8]). The first results in that direction were formulated in terms of Hardy's Banach space Hoo, 
whence the terminology. 

The functional F may be interpreted as a "measure of uncertainty" in system (1.1), (1.2). Its value 
2 , 2 , determines the accuracy e = II z - z 0 II of an estimate z of the input z based on observationsy(t), t 

[0, T], with constant of  proportionality ~:2. It is obvious that K 2 generally depends on the observed signal 
y(.) and that 

- infsup ~z- z*[[2- (2.4) 
2 (y) - z*,Z "F(z, T) 

The supremum is evaluated for all non-zero z ~ Z that satisfy Eq. (1.2). If the infimum in (2.4) is achieved, 
the element at which it is achieved is an H~-estimate of the input of system (1.1), (1.2). 

Definition 2.2. An Ho~-estimate of the state U(. ,  T) of system Q.1) relative to as criterion F, based 
2 2 on observationsy(t), t e [0, T], and Eq. (1.2) is an element u* e L~(t)) such that ~:u = ~:u(Y) is the least 

possible number satisfying the inequality 

[u(-, T)  - ,,* 2 < 
L 2 (~) - 

for all z ~ Z such that (2.3) holds almost everywhere. 
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We now consider input estimation within the framework of what is known as the minimax approach, 
when the undefined noise is subject to a priori known restrictions [8-10]. Suppose system (1.1), 
(1.2) produces an observed signal y = y(t),  t E [0, T], and at the same time it is known that the 
value of the functional F will never exceed ~t 2 > 0. 

Definition 2.3. The information set Z[T; y] C_ Z, consistent with the observed signal y(t), t • [0 ,  T], 
is defined as the set of all elements z • Z which satisfy Eq. (1.2) and the condition F(z, T) <. ~t z. 

Clearly, the unknown input z certainly belongs to the set Z[T;y] and the latter is a guaranteed estimate 
of the input based on the observation y(t), t ~ [0, T], under the constraint F ~< ~t 2. Since Z[T; y] is 
a bounded set, we can define a minimax estimate of the input as, say, the Chebyshev centre z*(T) of 
the set 

sup z -  

The accuracy of this estimate equals the Chebyshev radius r2(T) = sup {llz -z*(T)II Iz • Z[T; y]} of 
the information set. Note that in general z*(T) ~ Z[T; y]. We also define the information set 
U[T; y] c L2(f2) of states of system (1.1) at time t = T, consistent with the observed signal y(t), 
t ~ [0, T], as 

U[T;y] {u(.) u(.,T; w) 13~(.) ~ 2 . = = Lm(O, T) .  z ~ Z[T;y] } 

The minimax estimate u*(T) of the state u(., 7) and its accuracy are defined by analogy with the 
definition for the input. 

Consider the following assumption (according to which the system is linear-quadratic). 

Assumpt ion  2.1. Assume that system (1.1), (1.2) and criterion (2.1) satisfy the following 
conditions 

1. V=V, 

2. b(u ,t) = B(t)u,  B(t) ~ ~(V,  L2(~)), t ~ [0, T] 

3. 1(u) = u 

4. g ( u , t ) -  G(t)u, G(t) ~ ~(L2(~), Rm), t ~ [0,T] 

5. o~(uo)=(u o - ~a o, N,(u o - "Uo))L2(. ) 

6. fo (V, ~, t)  = (V -- 0 (t) ,  N 2 (t)(v - D ( t ) ) )v  + (~ - ' ~ ( t ) ) ' M ( t ) ( ~  - ~( t ) )  

where N1, Nz(t) and M(t)  are self-adjoint positive continuous coercive operators in the respective spaces 
LZ(fl), V, R "n, and Nz(t), M(t)  and also B(t)  and G(t)  are continuous in t in the operator norm. The 
input ~, = {u0, ~ "  ), z'(" )} ~ Z is given. 

Henceforth we shall put N w  - {NlU~ N2(. )u(. )}, My - M(. )y(. ). We let (.,.)H denote the scalar product 
in the Hilbert space H. Define operators by 

C: W ~ w  ~ g(u(', .;w),.)~ L~(O,T) 

A : W ~ w  ~ { w , y -  Cw} ~ W ~  L2m[0, T] ~ Z 

Theorem 2.1. Let assumption 1.1 be valid. Then a unique element z* = {w*, ~*} • Z exists which is 
an H®-estimate of the input z relative to the criterion F, based on observationsy(t), t • [0, T], such that, 
moreover 

w* = PC* M(y  - C-ff - ~) + ~,  6" = Y - C(~  + w*) (2.5) 

×2 =11APA* II, P = (N + C* MC) -I 

Proof. Under our assumptions about the system, the problem reduces to evaluating, for given y, the 
least number ~2 = ~¢2(y) such that, for some z* • Z 
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* 2 II A w  - z II w < x2 [(u0 _ u-0, N! (u 0 - tT. 0))t2 (ta~ + 

T 
+~ ((y(t) - (Cw)(t)  - ~ ( t ) ) 'g ( t ) (y ( t )  - (Cw)(t)  - ~(t)) 

0 

+ (v ( t ) -  0 (t), N 2 (t)(u ( t ) -  0 (t)))v)dt], V w  ~ W (2.6) 

Having prescribed an arbitrary ~t 2 > 0, consider the set Wg2 of all elements w e W such that the 
coefficient of K z on the right of inequality (2.6) does not exceed la 2. Let us assume that p2 is 
sufficiently large and that W~2. 0. Then the supporting function of the setAW,2 = {z ~ Z Iz = Aw,  
w W : }  is 

9 ( ~ . , A W 2 ) -  sup (A*~ . ,w) :  
w~W~2 

=(~ ,Aw*)+(~2-~2(y) )~ (~ . ,  APA*~,)~, E ~ Z  

where w* and P are those specified in the assumptions of the theorem. Since 

[lAw- Aw*U 2 =[[APA*II& _×2(y)) 
w~W~2 

(2.7) 

it follows that ~:2 ~< IIAPA* II. 
We will show that this is an exact equality. Suppose that ~:~ = I IAPA*I I  - e, e > 0 and, 

accordingly, an H®-estimate of the input different from that defined in (2.5) is ~ .  Choose ix 2 so that la 2 > 
2e-l~c2(y) lIMA* II. It follows from (2.7) and the properties of the Chebyshev centre of the setAW~,2 that, 
for any 8, 0 < 8 < max 1/2bt 2 ~ [IAPA* I1-1, [[APA* II(~t 2 - lcZ(y))}, a w ~ WH2\Wp.2 _6, exists such that 

I lAw 8 [* ll2>llAw8 - A w *  112>(g 2 - ~ - x 2 ( y ) ) I I A P A *  II 

Then IIAws - z* I[ 2 > ~c2~t 2 ~ tc2F(Aws, T), contrary to the definition of ~c 2. The theorem is proved. 

Corollary 2.1. If  assumption 2.1 holds, there is a unique element u* which is an H®-estimate of 
the state u(- ,  T) relative to the criterion F, based on observations y(t),  t E [0, T], and moreover 
u* = u(.T; w*). 

Corollary 2.2. If assumption 2.1 holds, the following equalities are true for system (1.1), (1.2): 
z* = z*(:r), u* = u*(T). 

Remark 2.2. All the results obtained previously for systems (1.1), (1.2) under assumption (2.1) may be transferred 
to systems in which the observations are obtained by virtue of the equation 

y(t) = G(Ou(., t) + R(t)v(t) + ~(t), t ~ (0, T) 

where R(t) ~ ££(V, R ~) is an operator function continuous in t. 

3. I N F O R M A T I O N  STATE AND I N F O R M A T I O N  SET 

Let  us return to system (1.1), (1.2). Suppose the observed signaly(t), t ~ [0, 7] is known. We define 
a "value" function 

t~(~,O) = inf{F(z,T) l u(.,O;w) = 
z~Z 

y(t)  = g(u(., t; w), t) + ~(t), t ~ [0, 01 } (3.1) 

The domain of  definition of • will be defined as the set of all pairs (u, 0) e L2(f~) x [0, 7] for which 
an element w e W exists such that u(., 0; w) = u. 
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Def in i t ion  3.1 [5, 8]. The function ~(u ,  0) is called the information state of system (1.1), (1.2) based 
on observation y(.) relative to the criterion F (2.1). 

Let us assume that, with respect to an input z for which the output y( t ) ,  t ~ [0, 7] was obtained, we 
also know that 

F(z,  T) <- g2 

We will construct the information set U[T; y]. 

(3.2) 

L e m m a  3.1. The following equality holds 

{t~ ~ L2 (t2) I ~(t~, T) < g2} = U[T;y] 

The proof follows directly from the definitions of the information set U[T; y] and the function ~(u, 0). 
Note that in a linear-quadratic system the set U[T; y] is an ellipsoid with supporting function [9] 

p(ll U[T;yl)=(l,u* (T)) ta(fl)+(g2 _ h  2 v t  

where 

ti*(T)- Du(T) = B(T) O(T)+P(T)G*(T)M(T)(y(T)-G(T)(u*(T)+u(.,T;~))_~(T)),u*(O)='aO (3.3) 

P(T) - DP(T)- P* (T)D* = B(T)N 2 (T)B* (T)- 

-P(T)G* (T)M(T)G(T)P(T), P(0) = Ni -I (3.4) 

h2 (T) = ( y ( T ) -  G(T)(u* (T) + u(., T ; ~ ) ) -  ~(T)) 'M(T)(y(T)-  

-G(T)(u* (T)+u( . ,T;~) ) -~(T) ) ,  h2(O)= 0 

Let D denote the operator Du = Au - u with domain of definition {u ~/-/°1(f2), Au E L2(f2)}. The solution of an 
operator equation for P(T) is understood in the sense of [11, 12]. 

Consider a pair, ~, 0 in the domain of definition of ~.  Under the assumptions adopted in Section 1, 
assuming also, for example, that the function f(u) - f ( u ( x ) )  is sequentially weakly closed on L2(F~), the 
infunum in (3.1) is achieved. Let ~ = (u0, v' (")} be a minimum point. By the Bellman Optimum 
Principle [7, 13, 14], the following equality will hold for 5 > 0 

0 
~(t~, O) = ~(u( . ,  0 - 8; ~v), 0 - 8) + S fo (~(t),  y( t )  - g(u(., t; ~), t )dt  

0-8 

Consequently, ify(t) and 9 (t) are continuous from the left at 0, then 

lim 8 -~ (~(~,0) - ~(u(., 0 - 8;~),0 - 8)) = fo(C,(0),y(0)- g(~,0), 0) 
8~+0 

Similarly, for any 6 and any w e W satisfying the equality u( . ,  0; w) = ~ and the condition that the 
function u(t) is left continuous at 0, we have 

lim 8 -1 (~(~, 0) - O(u(., 0 - 8; w), 0 - 8)) < f0 (v (0), y(0) - g(~, 0), 0) 
5~0  

We will use the notation 

d ~ ( ~ ,  O) / dt  Icl I~w = 1-~ 8 -t (~ (~ ,  O) - (~(u( . ,  0 - 8; w), 0 - 8)) 
" ' " 5--~0 

for w e W such that u(., 0; w) = u. 

T h e o r e m  3.1. For u and 0 in the domain of definition of the function • for which 0 is a left-continuity 
point of the functions ~ (t) andy(t)  the following equation holds 
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ITlwin { A  ( l / (O) ,  y ( 0 )  -- g(/~, O), O) -- d ~ ( / 4 ,  e )  ] d f  [ ( l . I ) w  } = 

= 3~ (¢'(0), y(O) - g(a, O), O) - d~(~, O) I dt ICE oe  = 0 (3.5) 

The infimum is evaluated for all w • W such that u(., 0; w) = u and the function u(t) is left continuous 
at 0. Henceforth, ~(t~, 0) = ct(~), '¢ ~ • L2(f~). 

Equation (3.5) is the direct equation of the Hamilton-Jacobi-Bellman type [5, 7, 13], written in implicit 
form. 

Let us assume that the problem of the H®-estimate of the input to system (1.1), (1.2) based on 
measurements y(t), t • [0, T], relative to the criterion F (2.1), has a solution, and that the quantity 
~:2 = ~:2(y) has been evaluated. Consider the functional 

L(z*,z,O)~lu o -u~ IIL~(~ ) 2  +llv(.)_v* (.)ll%fo.o;v ) + 

* 2 + II ~(-) - ~ (.)IIL~¢0.0 ) -x2(y)F(z,O) 

and define a "value" function 

^* ^ . * * ^* 
J(u ,u,0) = u(-,0;w) = t~, mf sup{L(z ,z,O) l u(.,0; w ) = u , 

z eZ zeZ 

y(t) = g(u(., t;w), t) + ~(t), t e [0, 0] } (3.6) 

We shall say that u *, ~ • L2(~), 0 • [0, T] belong to the domain of definition o f J i f z*  • Z, z • Z exist 
satisfying the three equalities on the right of the definition (3.6) of the "value" function. 

Let us assume that for all u , u, 0 in the domain of definition o f J  a saddle point z , z of the functional 
L exists 

inf{L(z*, ~., O)lu(., 0; w*)=~*}=L(~.*, ~., 0)= 
z* t Z  

=sup{L(~.*, Z, 0)lu(', 0; w)= ~, y(t)=g(u(', t; w), t)+~(t), re[0 ,  0]} 
zeZ 

Given z* e Z such that u(., 0; w*) = u * and z e Z such that u(., 0; w*) = u * and relation (2.3) holds, 
we put 

dJ(~*, t~, O)ldtl . . . . .  = 17"mS-l(J(~, t~*, O)-J(u(., 0 - &  w*), 
tl.,~w ,w 5 ~ 0  

u(., 0 - &  w), 0-5) )  

Theorem 3.2. For all u *, u, O in the domain of definition of the function J, if £ *, ~" is a saddle point 
of the functional L and the functions ~" (t), ~" *(t),y(t) are left continuous at the point O, the following 
equation holds 

^* + IIv (O)-u *(0)112v + rain max{-dJ(u , fi, O)/dtlo.l)w.w 
Z* Z 

+ll {(O)- ~*(0)II~., -k2(y)f0(v (e), y(e)-  g(fi, o), o)} = 

= -dJ(;,*, r,, O))/dt ~o.,)~,'.~, +"  ~,(O)- ~"(O),~, + ~ ~(O)- ~(O),~, .  - 

- × 2 ( y ) f o ( ~ ( O  ), y(O)-g(~, O), O)}=0 

T h e  extrema are evaluated over all z* e Z and z • Z such that u(., 0; w*) = u*, u(-, 0; w*) 
-- u and relation (2.3) holds, and the functions o*(t), t)(t), ~*(t), {(t) are left continuous at 0. 
Furthermore 

^ ,  ^ 2 

,(,r. o =llu 
Proof. For any 6 e (0, 0), the following equation holds 
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J(t~*, t~, 0 ) = m i n  max{L(z*, z, 0)lu(., 0 - 8 ;  w*)=u(.,  0 - 8 ;  @*) 
z*eZ zeZ 

u(-, 0 -  8; w) = u(., O - 8; @), v *(t) = ~'* (t), v (t) = ~(t) 

~*(t)=~*(t), ~(t)=~(t),  t ~ ( 0 - 8 ,  0] 

y(t) = g(u(., t; w), t) + ~(t), t ~ [0, 0 -  8] } = 

8) + +,(.)-v * )] 2 w ), u(., 0 - 8 ;  ~),  0~- (- + = J(u(., 0 -  8 ;  ^ * ' ++2~0-~, 0: v )  

0 

q̂  . f  ~( ' ) -~  (" - k 2  J fo(v(t), y(t)-g(u( ' ,  t; ¢v), t), t)dt 
L2,(O-S, O) 0-5 

whence it follows (subject to suitable continuity assumptions) that 

lira 8-1(J(a, +*, 0) -J (u( . ,  0 - 5 ;  @*), u(., 0 - 8 ;  @), 0 - 8 ) ) =  
5-++0 

=ll+<o>-+'<o>ll+ y ( O ) - g ( ~ ,  0>, 0) 

On the other hand, for any o*(.  ) e LE(0 - 8, 0; V), ~*(. ) e L2(0  - 8, 0) and any z • Z such that 
u ( . ,  T; w) = u and y(t) = g(u(., t; w), t) + ~(t), t e [0, 0], we have the following inequalities 

0 
J(a*, ~, o)<~ JCu(., 0 - 5 ;  @*), u(., 0 - 5 ;  @), 0 - 5 ) +  j" 01~(t ) -  

0-8  

-u*(t)ll~, + II~t)-~*(t) l l~, , -k2(Y)fo(~(t) ,y( t )-g(u(  ", t; if), t), O)dt 

o 
J(~*, ~, O)>~J(u( ., 0- f i ;  ~,*), u(., 0 - 5 ;  @), 0 - 5 ) +  ~ ( l lu( t )-  

0-8 

-¢~*(t) II 2 + II ~( t ) -  ~*(t) I1~,,, -k2(y)fo(v (t), y ( t ) -  g(u(., t; w), t), t))dt 

The theorem is proved. 

4. R E T R O G R A D E  E Q U A T I O N  OF 
H A M I L T O N - J A C O B I - B E L L M A N  T Y P E  

In this section and the next two we will be studying system (1.1), (1.2) under  Assumptions 2.1, also 
assuming, for simplicity, that ~ = 0. An H~o-estimate of the input to this system exists and is unique and 
can be obtained from the condition 

z* =arg rain max {llz-z* II a -×a(y)F(z, T)l 
z*eZ z={w. ~l~Z 

y(t) = G(t)u(', t; w)+ ~(t), t e [0, T] } 

With the quantity K2(y) found in Theorem 2.1, having evaluated the maximum over all z e Z, wc obtain 
the following equation for the projection of the input estimate onto W 

w * = a r g  min .man ~u~, Nlu~)t?(f~)+(u*(t), N2(t)v*(t))v+ 
v*(.)eL2(0, T; V) u0~L2(Q)I x 

+(y(t)-G(t)u( ' ,  t; w*))'M(t)(y(t)-G(t)u(.,  t; w*))} 

(Note that w* is also an H~-estimate for w based on observationsy(t), t e [0, 7] relative to the criterion 
F; this concept is defined by analogy with the definition of an H~o-estimate for the input.) The  minimum 
with respect to u~ is achieved at an element  u~, which is a solution of the functional equation 
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T 

Nlu; + S S*(t)G*(t)M(t)G(t)S(t)dtu*o = 
0 

T t 

= I s* ( t )a  * (t)M(t) (y(t) - a(t) I s( t  - x)B(x) v* (-Oa~)at (4.1) 
0 0 

(this solution exists and is unique in LZ(f2)), where S(t), t >I O, is a strongly continuous semigroup, 
generated by an operator D. Then 

v*(.)=arg minli(/v*(t), N2(t)v*(t))v+(Y(t )- 
u * ( ' ) l o  " 

-G(t)fi(t))'M(t) (y ( t ) -  G(t)fi(t)))dt Iv*(.) e L2(0, T; V)} 

where fi(t), 0 ~< t ~< T is determined from the equations 

~(t) - Dfi(t) = B(t) u* (t) + la(t)G* (t)M(t) (y(t) - G(t)~(t) ) 

(4.2) 

(4.3) 

r iO) = o 

~(t )  - DP( t )  - P* ( t )D*  = - P ( t ) G *  ( t )M( t )G( t )P ( t )  (4.4) 

P(O) = N? 1 

Specifying arbitrary 0 ~ [0, T], ti 0 ~ L2(f2), o*(.) ~ L2(O, T; I3, let us consider a trajectory of system 
(4.3) over the interval 0 ~< t ~< Twith initial data t~(0) = ~.  Denote this trajectory by ~(t, 0, t~; u*). Note 
that, as before, the function/5(0 is governed by Eq. (4.4). 

We define a "value" function by 

W(fi o, O) = min ((v*(t), N2(t)v*(t)) v +(y ( t ) -  

-G(t)~(t, O, Uo; u *))'M(t) (y(t) - G(t)fi(t,O, fi o; v*)))dt I 

o *(.) ~ L2(0, T; V)}, 0 e [0, T], t~ 0 ~ L2(L"2) (4.5) 

The function • is continuous on L2(f2) x [0, T], in which case the minimum on the right of (4.5) is 
achieved, in fact at a unique point, for any values of the arguments ~ ,  0. We will use the following 
notation 

d+~(fio, O ) / d t l ( 4 . 3 ) . . =  lira 8-1(~(fi(e+8, O, rio; v*), e + 8 ) - ~ ( ~  0, e)) 
u 8 - ~ 0  

It can be shown that q~(~o, 0) is a solution of a retrograde equation of the Hamilton-Jacobi-Bellman 
type 

d+W(fi o, O) /d t  1(4.3). v*(,) +(v*(t), N2( t )v * ( t ) )  v = 

= minfd+W(fi o, O ) l d t  +(v*(t), N 2 v * ( t ) ) v } =  
u * ~ V t  1(4.3), u * (t) 

= -(y(0) - G(0)~ 0)'M(0) (y(0) - G(0)fi 0) (4.6) 

and it satisfies the boundary condition W(~, T) = 0, V ~  ~ L2(f2). Let v*(t), 0 ~< t ~< T achieve the 
minimum in (4.5). This function is a solution of the following Fredholm equation of the second kind 
with symmetric non-negative kernel 

T 

N2(t)v*(t)+ S K(t, "c)v*('~)d'c= g(t), O ~  t<~ T (4.7) 
o 
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where 

T 

K(t, ~)= J B*(t)C*(s, t)G*(s)M(s)G(s)C(s, %)B('c)ds 
max l t, "q 

T 

g(t) = I B*(t)C*(t, %)G*C'OM(%)(y('O- 
t 

% 

-G(%)JC(%, s)P(s)G*(s)M(s)y(s)ds)dx, O~ t, x<~ T 
0 

C(s, t) is an almost strong evolution operator corresponding to the operator (D - P(t)G*(t)M(t)G(t)), 
t ~ 0 [11]. This leads to the following representation for the function 

T 

W(~ o, O) = ~ (y(t) - G(t)u ° (t))'M(t) (y(t) - G(t)u ° (t))dt 
o 

The function u°(t), 0 <<- t <- T satisfies a system of differential equations of the form 

li°(t) - Du°(t) = P° (t)G* (t)M(t) (y( t ) -  G(t)u ° (t)), u°(0) = u0, 

pO (t) - DP ° ( t ) -  pO, (t)D. = _po,  (t)G* (t)M(t)G(t)P ° (t) + 

+B(t)N2(t)B*(t), P°(0)=/3(0) 

Let 

3+W(~ 0, 0) / 30 = lira 8 -1 (W(~ 0, 0 + 8) - W(~0, 0)) (4.8) 

~W(h0, 0)/Oh0 = A(~0, 0) E (L2(f~)) * (4.9) 

(the last expression is the Fr6chet derivative of the function W(~, 0) with respect to ~).  We shall identify 
A(~, 0) with an element L2(f~). 

Lemma 4.1. If ~ is in the domain of definition of the operator D and 0 ~ [0, 7), function (4.8) exists 
and is continuous. If ~ ~ Lz(f~), 0 ~ [0, T], function (4.9) exists and is continuous. 

Theorem 4.1. Suppose Assumption 2.1 holds for system (1.1), (1.2). Then, if w* = {uS, v*(. )} is an 
H~o-estimate of the input based on measurementsy(t), 0 ~< t ~< T, and ~(t) is a solution of Eq. (4.3) for 
u*(. ) = v*(. ), then for almost all 0 e [0, 7] one has a retrograde dynamic programming equation 

3+W(ll(O), O)/~O + (v*(0), N2(0)v*(0)) v + 

+ (y(O) - G(O)a(0)) 'M(0)  (y(0) - G(0)~(0)) + (D~(0) + B(0)v*(0) + 

+/~(0)G*(0)M(0) (y(0) - G (0)tl(0)), O~(tl(0), 0)/3~o) La(t~)= 0 

5. ADAPTIVE ESTIMATION OF THE INPUT 

Let us assume that an estimate z* = {uS, v*(. ), ~*(. )} has been calculated for system (1.1), (1.2), 
based on observations y(t), 0 <<- t <- T. Henceforth, to stress the dependence of the estimate on the 
observation interval [0, T], we will write z*(T) = {u~(7), v*(-; T), ~*(.; 7)}. It is obvious that, generally 
speaking, v*(t; 7) # v*(t; T + 8), ~*(t; 7 ) ,  ~*(t; T + 8) for 0 < t ~< T, 8 > 0, just as u~(7) ~ u~(T + 8). 
Hence, in order to evaluate an estimate z*(T + 8) based on the previously derived equations, it is not 
enough to know z*(T) and y(t), T ~< t ~< T + 8. In what follows we propose procedures for the 
approximate calculation of an estimate z*(T + 6) using only observationsy(t), T ~< t ~< T + 8 and the 
estimate z*(T) or an approximation thereof. In addition to Assumption 2.1, we take V = R p. 

By the results of Section 4, v*(t, 7) is a solution of Eq. (4.7). Having fixed t/> 0, we differentiate 
both sides of this equality with respect to T in the interval T > t. Letting Q(t; T) ~ ~£(L2(f~)), 0 ~< t ~< 
T denote a solution of the operator equation 
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T T 

N2(t)Q(t; T)+ J J B*(t)C*(s, t)G*(s)M(s)G(s)C(s, 
0ma x {t, x} 

x) x 

xB(x)dsQ('c; T)dx= B*(t)C* (T, t) 

(which indeed has a unique solution [15]), we find the following equation for v*(t, 7), using the function 
u*(t) introduced above in (3.3) 

3v*(t; T)I~T = Q(t; T)G*(T)M(T)(y(T)- G(T)u*(T)), T > t 

v*(t; t) = 0 

Similarly, we derive the equation 

OQ(t; T) / OT = Q(t; T)( D -  P(T)G* (T)M(T)G(T))* - 

-Q(t; T)G* (T)M(T)G(T)(P(T)-  P(T)), T > t 

Q(t; t)= N~l(t)B*(t) 

These differential equations are the basis of the following procedure for the approximate calculation 
of an estimate for the control. Fix 8 > 0 and construct a uniform partition of the interval [0, T], of 
diameter 8 > 0 (to fix our ideas, we assume that T = 8/0: to = 0, tl = 8, t2 = tl + 5 . . . .  tK = T. Defining 
~0 = 0, we proceed successively to calculate vSk+l for 0 ~< k ~< K -  1, as the values at t = Tof  the solution 
of  the Cauehy problem 

if(t) = Q(tk; t)G*(t)M(t)(y(t)- G(t)u*(t)), t k <- t <~ T, v (tk) =0 (5.1) 

Construct a piecewise-constant function v~(t), 0 ~< t ~< T, putting 

vS(t) = v~+ 1, tt < t ~< tk+ t (5.2) 

Theorem 5.1. The functions v~( • ) converge to v*(. ; 7) as fi ~ 0, in the norm of the space 
L (0, 7). 

Remark 5.1. The values of the function v*(t) in the interval T ~< t ~ T + 5 may be found by solving differential 
equation (5.1) over the interval T ~< t ~< T + 8 with initial condition u(T) = 0, or by using a suitable finite-dimensional 
approximation 

T+5 
VSK+I = fiN21 (t K)B*(t K )G*(t K )M(tK)(5 -1 J y('c)dz- G(tK)U*(t K)) 

T 

It should be emphasized that the evaluation of the function u*(t), t e (T, T + 8] (with the value of u*(T) 
determined on the basis ofy(t), t ¢ [0, 77) requires only a knowledge of the observationsy(t), t ~ (T, T + 5]. 

We now consider the estimate u~(7). This function, as shown previously, is a solution of the functional 
equation (4.1). We will represent u~(7) in the form 

* . T ~ ,  t 
u0(T) = P(T)~G (t)M(t) (y(t)-G(t)JS(t -'OB(x)v *(x; T)d'Odt (5.3) 

0 o 

t 
(G(t) = G(t)S(t), P(t) = (N l + S G*(z)M('c)G(x) a~)-l, t i> 0) 

0 

Prescribing an arbitrary 8 > 0, we find vS(t), 0 ~< t ~< T. Correspondingly, we let u~5(T) denote the 
expression obtained from (5.3) by replacing o*(x; 7) by v~(x). Differentiating with respect to T in the 
domain T > 0, we find that 

du~S (T)/dT = P(T)G* (T)M(T) (y(T) - G(T)u0S(T) - G(T)V(T)) 
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u s(0) = 0 

dP(T) I dT = -P*(T)G*(T)M(T)G(T)P(T), P(O) = N{ q 

d V ( T ) I  d T -  D V ( T )  = B(T)vS( t ) ,  V(O) = 0 

Theorem 5.2. For  any T > 0, the funct ions u0*8(T) converge as 8 ---> 0 to u0*(T) in the n o r m  of  
L2(n).  

Remark 5.2. For stationary observation operators G(.), i.e. G(t) =- G, 0 ~ t [9, 10, 17], the operator G(t) admits 
of an effective computational form. Consider, for example, spatially averaged observations 

Gu(., t) = col [ S gl (x)u(x, t)dx . . . . .  ~ gin (x)u(x, t)dx] (5.4) 

where gl = gl(x) . . . . .  gm = g,,(x) are given functions which are square-integrable over f2. Then 

(Tu(., t )=col[~,l(X, t)u(x, t)dx . . . . .  S~m(x, t)u(x, t)dx] 

where gl(t) = g l(x, t) . . . . .  g,,(t) = fire(x, t) are solutions of the Cauchy problems 

gi( t ) -D~i( t )=O,  t>0 .  ~i(O)=gi, i=1 .. . . .  m 

6. E X A M P L E  

In addition to Assumption 2.1, we assume the following conditions. 

Assumption 6.1. Suppose that 
1. the initial state u0 of system (1.1) is known, 
2. V =  R", 
3. B(t) -~ B, t ~ [0, T], where 

Bv=bl (X)Vl+. . .+bm(x)v  m, v ~V,  x ~ 2  

b i ~ 142 (f~), i = 1 . . . . .  m, 

4. the observation operator is such that G(t) - G, where G is of the form (5.4), andgk ~ Hi(f)), k = 1 . . . . .  m, 
5. the observation noise ~(t) in Eq. (1.1) is an element of the space H~(0, T). 
With these assumptions, we obtain an equation for t~(. ) 

Y( t ) -  GDu(., t; v (-)) = GBv (t) +'q(t), 0 <~ t <~ T (6.1) 

(Y(t) = ~(t), "q(t) = ~(t)) 

Here D is the operator introduced in Section 3. By Remark 2.2, we can now determine an H~o-estimate for the 
control as a function v*(. ) e/_~(0, T) such that the quantity K 2, guaranteeing the inequality 

* 2 2 T 
IIv ( .)-  v (.)IIL~(0 ' T)<~ k ~ (v (t) 'N(t)v (t)+'q(t)'M(t)'q(t))dt 

for all u(- ), 11(. ) ~ L~(0, 7) satisfying (6.1), is the least possible. This function, as is easily shown, minimizes the 
functional 

T 
J(v *(.)) = S (v*(t)'N(t)v *( t )+(Y( t ) -  GDu(., t; v * ) -  

o 

- G B v  * ( t)) 'M(t)(Y(t)-GOu(. ,  t; v * ) - G B v  * (t)))dt, v *(.) ~ L2m(O, T) 

Put M(t) = E,  N(t)  = e.E, where e > 0 and E is the m × m identity matrix. We put v*(- ) = v*(. ) to emphasize 
the dependence of the estimate on the choice of the matrices M(t) and N(t). 
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Theorem 6.1. If  the operator GB is invertible on R m, the limit lim v*(. ) = ~" *(. ) as c ~ +0 exists. This function 
~" *(. ) is the unique solution of the equation 

Y(t)-GDu(., t;.~,*)=Gl~*(t), t > 0  

Note that it is precisely this function v ( . )  that was considered in [17, 19] as an estimate of the control, 
while the quantities v*(t; T + ~5), T ~< t ~< T + 8 were determined there from the equation Y(t) - GDu(.,  t; v*) = 
GBv*(t), T <~ t <~ T + 8, where the initial condition for u(x, T) was u(. ,  T) = u(. ,  T; v*(.; T)). This procedure 
is analogous to that described in Remark 5.1 if one replaces u*(trO in the latter by u(. ,  T; v~). 

This  r e sea rch  was s u p p o r t e d  f inancial ly by the Russ ian  F o u n d a t i o n  for  Basic  R e s e a r c h  (97-01-01003, 
96-01-00050). 
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