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The problem of identifying the input of a system governed by a “semi-linear” evolution equation of parabolic type, based on the
results of observations subject to undefined disturbances, is investigated. Estimates of the input, optimal in the sense of the so-
called H,-criterion, are obtained. The information function of the system—the value function in an appropriate optimization
problem—is evaluated. The relations between the information function and information sets are indicated. Optimality principles
adequate to the proposed formulations of the problem are formulated and the corresponding dynamic programming equations
are derived. Procedures for regularizing the problem, based on evolution equations of the input estimates, are proposed for the
heat-conduction equation. © 1999 Elsevier Science Ltd. All rights reserved.

1. FORMULATION OF THE PROBLEM
Let Q be abounded domaininR",n=21,6Q=T ¢ C>. Consider the “semi-linear” evolution equation

u, —Au+ fuy=>b (t),1), xeQ, 1e(0,0) (1.1)
u€.0)=0, LT, 1€(0,0)]; u(x,0)=uy(x), xeQ

where A is the Laplacian and v(t) is a “control”; the admissible controls are functions v(-) € L%0, 0;
V) such that

u(t) € V for a.e. (almost all) ¢ € [0, ],

where V is a closed bounded convex subset of a Hilbert space V. The function b(v, 1), v € V, t € [0, ©]
satisfies a Lipschitz condition as a function of v and is continuous in £, with 5(0, r) = 0. As to the function
f(s), s € R, the following assumptions are made.

Assumption 1.1. We assume that
1. f(-) € C'(R),

2.f(0)=0,

3. f satisfies the growth condition

LFGsy) = £(52) = f/O)sy = s IS CUsy 197! +15,187 Y15y =5, |, Vsposp € R

for some C > 0 and forg such that 1 < g < (n + 4)/n.

It is well known [1-4] that, under the above assumptions, one can prove a local theorem that guarantees
the existence of y > 0 such that, if || ug || %q) + [|0(+) |20, e; 1), < ¥, then Eq. (1.1) has a solution, which
is moreover unique in the class C([0, ®]; L)) n L%(0, ®; H'(Q)) and satisfies a Lipschitz condition

with respect to ug, v( - ). An element u(-, t) € LX(Q) will be called the “state” of system (1.1) at time ¢.

Let us assume that »( and v(-) are not known in advance but that the system has a solution u(x, ¢)
in the interval z € [0, 7], T < @. It will be assumed that the accessible information about the solution
is obtained by virtue of an equation of measurements

y()=gu(,t),t+ (1), te[0,T) (1.2)

where y(f) € R™ are the measurement data at time ¢, £(t) € R™ is the measurement noise and £()
LZ(0, T); 8(-, -) € Ci(LYRQ) x [0, T) is a given m-dimensional function. We put z = {ug, v(-), £(-)}; we
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call an element z € Z = L¥(Q) ® L0, T; V) & L2(0, T) an “input” to system (1.1), (1.2) (& denotes
the direct sum of Hilbert spaces). Define Z C Z to be the set of all inputs in which v(f) e V for almost
all t. We will also use the following notation

w={uv ()}, we W=IL2(Q)® [*0,T;V)

W={we Wit)e V foralmostall e [0, TT}
Let u(x, t; w) denote the solution of Eq. (1.1) corresponding to the initial state &g and the control v(-)
in the vector w = {ug, v(-)}.

_ The problem is to estimate the “input”z € Z based on the “output” y(-) e L2,(0, T). In some applica-
tions, this inverse problem is conventionally referred to as “inverting” the system.

2. THE H,-APPROACH AND MINIMAX ESTIMATION OF THE INPUT
We define a functional in the input space Z of system (1.1), (1.2) by

T
F(z,T) = oug)+ [ fov (1), E(0),0)dt (2.1)
0

The continuous functionals aug), 4y € LX(Q) and fy(v, &, 1), {v, &, t} € ¥ x R™ x [0, T] are such that
F(., T) is strictly convex and coercive for all T e (0, ©]; the latter means that, for some ¢y =
co(T) > 0, we have F(z, T) = cy||z||%, VZ € Z.

Definition 2.1. An H,-estimate of the input of system (1.1), (1.2) relative to a criterion F based on
observations y(t), ¢ e [0, T] is an element z* = z*(y) e Z such that the quantity k> = k*(y), satisfying
the inequality

lz-2*? < %*F(z,T) (2.2)
for all z € Z such that
() = glu(;w), 1)+ £(t), te[0,T] (2.3)
is the least of all possible such elements.

Remark 2.1. The optimality criterion (2.2) is related to problems investigated in what is known as “H_-optimal
control theory”—a deterministic approach to the investigation of optimum problems in the presence of disturbances
(see, for example, [5-8]). The first results in that direction were formulated in terms of Hardy’s Banach space H,,
whence the terminology.

The functional F may be interpreted as a “measure of uncertainty” in system (1.1), (1.2). Its value
determines the accuracy e* = || z — z% || of an estimate z* of the input z based on observations y(f), t
[0, T, with constant of proportionality . It is obvious that k? generally depends on the observed signal

y(-) and that
|-+

2

20 l
% = infsu 2.4
()= infsup D) 24

The supremum is evaluated for all non-zero z € Z that satisfy Eq. (1.2). If the infimum in (2.4) is achieved,
the element at which it is achieved is an H,-estimate of the input of system (1.1), (1.2).

Definition 2.2. An H_-estimate of the state U(-, T) of system (21.1) relative to as criterion F, based
on observations y(¢), t € [0, T}, and Eq. (1.2) is an element u* € L“(Q) such that k2, = k%(y) is the least
possible number satisfying the inequality

* 2 2
"u(-, T-u "L2 @ <%, F(z,T)
for all z € Z such that (2.3) holds almost everywhere.
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We now consider input estimation within the framework of what is known as the minimax approach,
when the undefined noise is subject to a priori known restrictions [8-10]. Suppose system (1.1),
(1.2) produces an observed signal y = y(¢), ¢t € [0, 7], and at the same time it is known that the
value of the functional F will never exceed p° > 0.

Definition 2.3. The information set Z[T; y] C Z, consistent with the observed signal y(¢), ¢ € [0, T},
is defined as the set of all elements z e Z which satisfy Eq. (1.2) and the condition F(z, T) < p%

Clearly the unknown input z certainly belongs to the set Z[T; y] and the latter is a guaranteed estlmate
of the input based on the observation y(t), t € [0, T], under the constraint F < y?. Since Z[T; y] is
a bounded set, we can define a minimax estimate of the input as, say, the Chebyshev centre z*(T) of
the set

T
Sp Je-o" )= min sup ez

The accuracy of this estimate equals the Chebyshev radius rZ(T) = sup {||z -z*(T)| |z € Z[T; y]} of
the 1nformat10n set. Note that in general z*(T) ¢ Z[T; y]. We also define the information set
UTy]CL (Q) of states of system (1.1) at time ¢t = T, consistent with the observed signal y(z),
te[0,T],as

UIT;y) = {u() = u(, T;w) | FEC) € I2,(0,T): 2 € Z[T; y1)

The minimax estimate u*(T) of the state u(-, 7) and its accuracy are defined by analogy with the
definition for the input.
Consider the following assumption (according to which the system is linear-quadratic).

Assumption 2.1. Assume that system (1.1), (1.2) and criterion (2.1) satisfy the following
conditions
1L.V=V,
2. bw,t)=B(tw, B(t)e2(V,I*(Q)), 1€[0,T}
3. fwy=u
4. g(u,t)=G(tu, G()e2(L*(Q),R™), t€[0,T]
5

- ouug) = (ug — g, Ny(tp — #9)) 2,

6. fo, &= ~0 (1), Ny - (1)), +(E-EOYMEXE-E()

where Ny, N,(t) and M(t) are self-adjoint positive continuous coercive operators in the respective spaces
L (Q) V, R™, and N,(t), M(¢) and also B(t) and G(¢) are continuous in ¢ in the operator norm. The

input z = {w, 0(-), z(-)} € Z is given.
Henceforth we shall put Nw = {Njug, No(- )Ju(- )}, My = M(- Jy(- ). We let (-, - )y denote the scalar product
in the Hilbert space H. Define operators by

C:Waw > g(u(,sw),) € [%,(0,T)
A:Waws {w,y-Cwle W [4[0,T)=

Theorem 2.1. Let assumption 1.1 be valid. Then a unique element z* = {w*, £*} e Z exists which is
an H-estimate of the input z relative to the criterion F, based on observations y(z), t € [0, T}, such that,
moreover

W =PC'M(y~Cw-E)+W, £ =y-C@+w") (2.5)
%2 =l APA"ll, P=(N+C*"MC)™

Proof. Under our assumptlons about the system the problem reduces to evaluating, for given y, the
least number x? = k*(y) such that, for some z* € Z
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W Aw —2° 165, * (g ~ o, Ny (o ~ B)) 2, +

T _ =
+bf (@) - (Cw)B) - &))" M(t)(¥(1) ~ (Cw) (1) - E(8))

+(u O-0@O N, ()~ (t)))v)dt], VweW (2.6)

Having prescrlbed an arbitrary p? > 0, consider the set W, of all elements w € W such that the
coefficient of «* on the right of 1nequa11ty (2.6) does not exceed p® Let us assume that p? is
sufficiently large and that W2 # 0. Then the supporting function of the set AW,: = {z € Z |z = Aw,
we Wp}is

p(?»lAWz)_ sup <A A, w)

weW W2
- . 2 2,4 o\ 1
= (AW )+ (W -2 00N APALY, AezZ @7
where w* and P are those specified in the assumptions of the theorem. Since

oap [ = T =lapafo? -20n

it follows that k? < [|APA*||.

We will show that this is an exact equality. Suppose that &’ = ||APA*| - &, £ > 0 and,
accordmgly, an H,-estimate of the input different from that defined in (2 5) is z*. Choose p? so that p? >
267 (y) | APA* | Tt follows from (2.7) and the propertles of the Chebyshev centre of the set AW,2 that,
for any 5,0 < § < max 1/2u” € | APA* [, | APA*||(4* - ()}, aw € W,2\W,2 _s, exists such that

Il Awg —Z" 172l Awg — Aw” 12> (u? - 5 — 2 (y)) Il APA™ I
Then [|Aws — z* ||* > «?u? = «’F (Aws, T), contrary to the definition of k. The theorem is proved.

Corollary 2.1. If assumption 2.1 holds, there is a unique element u* which is an H_-estimate of
the state u(-, T) relative to the criterion F, based on observations y(¢t), ¢ € [0, T], and moreover
u* = u(-T, w*).

Corollary 2.2. If assumption 2.1 holds, the following equalities are true for system (1.1), (1.2):
=2%(D), u* = u*(D).

Remark 2.2. All the results obtained previously for systems (1.1), (1.2) under assumption (2.1) may be transferred
to systems in which the observations are obtained by virtue of the equation

¥(O =GOu(, 1) + ROUN + &), 1€ (0, 7)

where R(t) € £(V, R™) is an operator function continuous in ¢.

3. INFORMATION STATE AND INFORMATION SET

Let us return to system (1.1), (1.2). Suppose the observed signal y(t), t € [0, 7] is known. We define
a “value” function

®(4,0)= ing {F(z,T)u(-,8;w)=u
()= glu(, t;w), 1)+ &(t),2 €[0,0]} (3.1)

The domain of definition of @ will be defined as the set of all pairs (%, 8) € LXQ) x [0, T] for which
an element w € W exists such that u(-, 6; w) = u.
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Definition 3.1 [5, 8]. The function ®(z, 6) is called the information state of system (1.1), (1.2) based
on observation y(-) relative to the criterion F (2.1).

Let us assume that, with respect to an input z for which the output y(¢), ¢ € [0, T] was obtained, we
also know that

F(z, T) = p? (3.2)
We will construct the information set U[T; y].

Lemma 3.1. The following equality holds
(i e L2(Q)| ©(3, ) < p*} = UlTy]

The proof follows directly from the definitions of the information set U[T; y] and the function ®(u, 6).
Note that in a linear-quadratic system the set U[T; y] is an ellipsoid with supporting function [9]

PUIUIT:yD=(Lu’ (D), + KDV PDIYE g V1 e L)
where
i (T)~ Du(T) = B(T) B(T)+ PTG (MT)(T) -G (N +u. Tiw) ~EMNu’ O =7, (3.3)
P(T)-DP(T)- P*(T)D" = B(T)N,(T)B"(T)-
-P(DG" (MMT)G(T)PT), P©)=N;' 34

R*(T) = (WT) - G(T)(w" (T) +u(, T;%)) - E(T)) M(TY(¥(T) -
~G(T)(u" (T)+u(, T; )~ E(TY), K2(0)=0

Let D denote the operator Du = Au - u with domain of definition {u e H*(Q), Au e L%(Q)}. The solution of an
operator equation for P(T) is understood in the sense of [11, 12].

Consider a pair, #, 8 in the domain of definition of ®. Under the assumptions adopted in Section 1,
assuming also, for example, that the function f(i) = f(u(x)) is sequentially weakly closed on L%(€2), the
infimum in (3.1) is achieved. Let W = {u, ¥ (-)} be a minimum point. By the Bellman Optimum
Principle [7, 13, 14], the following equality will hold for > 0

0
D(,0) = D(u(,0 - 8;W),0 - 8) + [ fo(V(1), y(6) - g(u( 1, W), )dt
8-3

Consequently, if y(¢f) and ¥ (¢) are continuous from the left at 8, then
Sm 87 (D(i, 0) - D(u(,0 ~ 8;W),8~8)) = f,(¥(8), (8) - 2(i,),0)

Similarly, for any 5 and any w e W satisfying the equality (-, 8; w) = u and the condition that the
function v(¢) is left continuous at 6, we have

}’1_% 57 (D(&,8) ~ D(u(,0 - &w),0~8)) < f,v (8), (8) - g(i, 6),6)
We will use the notation
d®(i,0)/ dt\; ), = @)8" (D(&,0) - (D(u(-,0 - §;w),0 - 3))
for w € W such that u(-, 6; w) = u.

Theorem 3.1. For u and 6 in the domain of definition of the function @ for which 8 is a left-continuity
point of the functions ¥ (£) and y(r) the following equation holds
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mui‘n{fo(u (e)’y(e) - g(ﬁ’ 6),0) - dq)(ﬁ’ 6)/dt |(l.l)w} =
= /o(¥(8), (0) - £(4,8),8) - dD(4,8) /it 1, 1,5 =0 (3.5)

The infimum is evaluated for allw e W such that u(-, 8; w) = u and the function v(¢) is left continuous
at 8. Henceforth, ®(z, 0) = a(z), V u € L¥(Q).
] Equation (3.5) is the direct equation of the Hamilton-Jacobi~Bellman type [5, 7, 13], written in implicit
orm.

Let us assume that the problem of the H,-estimate of the input to system (1.1), (1.2) based on
measurements y(), t € [0, T}, relative to the criterion F (2.1), has a solution, and that the quantity
Kk~ = k“(y) has been evaluated. Consider the functional

L ,2,0) =l uy - uoll +hvO-v O +

2 12(0,8;V)

+IEO-E ()"Lz 0 % 2(Y)F(2,0)
and define a “value” function
J@',i,0) = inf sup{L(z",2,0)1u(.6;w")=0", u(,8;w)=4,
z €Z zeZ
y(t) = gu(, t;w), 1)+ &(1),1 €[0,0)} (3.6)
We shall say that u*, u e L%(Q), 0 e [0, T] belong to the domain of definition of J if z* € Z, z € Z exist
satisfying the three equalmes on the right of the definition (3.6) of the “value” function.

Let us assume that for all *, #, 6 in the domain of definition of J a saddle point Z *, 7" of the functional
L exists

inf {L(z*, %, O)lu(, 6; w*)=2"}=L@E", % 0)=
"eZ

=sup(L(Z", z, O)lu(, 6 w)y=id, y(t)=gu(, & w), N+E&), te[0, 6]}
zeZ
Given z* € Z such that u(, 6; w*) = u* and z € Z such that u(-, 6; w*) = u* and relation (2.3) holds,
we put

Ak ~ el A AF _ : _K *
dl(u’, u, 9)/dt|(l.])w.,w—%1_1)1})8 Ja, @, 8)=Ju(, 6-38 w),

u(, 8-9; w), 6-9))

Theorem 3.2. For all u*, u, 6 in the domain of definition of the function J, if z *, Z is a saddle point
of the functional L and the functions ¥ ¥ (1), ¥ *(1), y(¢) are left continuous at the pomt 6, the following
equation holds

. +llv (@) v * @) I +

. ¥ A
rrzqn mzax{—d.l(u , i, 0)/dt I(l_])w'

+IE@©)~E @)%, —k*(1)fo (), ¥(©)—g(i, 8), B)}=

——dI@", & O)/dtl, .. . +UIEO) -V @) +1§O)~E @I, -

(W)L
%2 () f(¥(B), ¥(®)-g(@, ©), 8)}=0

The extrema are evaluated over all z* € Z and z € Z such that u(,, 6; w*) = u*, u(-, 6; w*)
= u and relation (2.3) holds, and the functions v*(t), v(?), £*(¢), &(f) are left continuous at 6.
Furthermore

ry - 2 ~ rY 1 A
J@*, &, 0)=|a —ulle(m—nz(y)a(u), Vi, de 2(Q)

Proof. For any § € (0, 9), the following equation holds
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J@', @ 0)=min max{L(z", z, O)lu(, 06~8; w*)=u(, -8 W)
2*ezZ 262

u, 8=38; wy=u(, 8-8 W), v¥O)=¥"(@), v(®)=3@)

E () =€), EO=&r), 1€®-35, 6]
w6 = g(ut, & w), D+E@), tef0, 881} =

— I, 0-8 W), uC, 8-8 W), 0+8)+[i0-v"0Of

Jeo-gof

whence it follows (subject to suitable continuity assumptions) that

1*e-5, o; V)

12,(0-3, e)'k2e{8fo(°(t), y(t) - g(uC, & W), 1), tdt

Jlim 87'(J@, ', O)-J(uC, 0-8 ¥, u(, 6-8 W), 8-98))=
~[v@-v @, +fo-E O], -F0AGE). 30~ ©). ©

On the other hand, for any v*(-) € LY0-5,0; V), 8%(-) L2%(6 - 5, 0) and any z € Z such that
u(-, T;w) = u and y(t) = g(u(-, t; w), t) + &(t), t € [0, 6], we have the following inequalities

J@*, &, 0)<J(u(, 0-8 W), u(, 6-58; W), 6-8)+ j %) -
98-8

~v* ) +1Ew - ®r, —k* (N fH (W), Y1) - g, £ W), 1), D)dt

0
J@*, 4, 0)=J(u(, 0-8; W), u(, 6-58 w), 6-8)+ | (lv()—
08-3

PO HNED-E O, K0V (), YO -gul, & w), 1), N)dr

The theorem is proved.

4. RETROGRADE EQUATION OF
HAMILTON-JACOBI-BELLMAN TYPE

In this section and the next two we will be studying system (1.1), (1.2) under Assumptions 2.1, also
assuming, for simplicity, thatz = 0. An H_-estimate of the input to this system exists and is unique and
can be obtained from the condition

z" = arg mm max {llz—z 12— (y)F(z, Tl
" ez z=(w, EleZ

y(0)=GOu(, £ w)y+E@), t€l0, T]}
With the quantity k%(y) found in Theorem 2.1, having evaluated the maximum over all z € Z, we obtain
the following equation for the projection of the input estimate onto W
*= i i . Nyug +*@®), N.(Ov'(@)) +
v oSaE u'(-)elr.g(lt? T V) uayeTzr(lm{@o 1u°>L2(9) ( @, Na(B)v ( )>V

+Hy(1) = G@ul, 1, W)Y M)((1) = G(Ou(, & w*))}

(Note that w* is also an H,-estimate for w based on observations y(¢), ¢t € [0, T] relative to the criterion
F; this concept is defined by analogy with the definition of an H-estimate for the input.) The minimum
with respect to uf is achieved at an element u§, which is a solution of the functional equation
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T
Nug + [S*(OG* ()M)G(1)S(t)dray =
0

T t
= { S* (G (M) (1) - G(2) g S(t - ©)B(T)v”* (t)dr)dt (4.1

(this solution exists and is unique in L%(Q)), where $(#), t = 0, is a strongly continuous semigroup,
generated by an operator D. Then

T
vi()=arg ny(x;{j ((u*(t), Nz(t)v"(t)>v +{y(t)—
v ()lo

~G(D)ii(1)) M(2) (y(1) - G()i(e)))dt " () € L0, T; V)} (4.2)
where u(t), 0 < ¢t < T is determined from the equations
ii(t) - Dik(t) = B)v* (1) + PG (OM(1) (y(1) - G()iK(e)) 4.3)
#(0)=0
Pt~ DB()~ B (D" = ~B()G* (OMHG®P() (44)
P©) =N}

Specifying arbitrary 8 € [0, T], tig € L*(€2), v*(-) € LX(®, T; V), let us consider a trajectory of system
(4.3) over the interval 8 < ¢ < T with initial data i1(8) = iy. Denote this trajectory by ii(¢, 0, it; v*). Note
that, as before, the function P(¢) is governed by Eq. (4.4).

We define a “value” function by

T
Wi, 0)= min{J (@, Ny(v* @), + (-
(]

~G(0)ii(1,8, ig; v ") M(2) (y(t)— G()ia(t,0, ity; v *)))dt |
v ()el}®, T; V)}, 6¢l0, T), iye2(Q) (4.5)

The function @ is continuous on L) x [0, T], in which case the minimum on the right of (4.5) is
achieved, in fact at a unique point, for any values of the arguments #, 6. We will use the following
notation

d¥ (g, 0)/dtl g .= M7 (PUO+3, 8, i; v7), 0:+8)— ¥, 6)
-

(43), v

It can be shown that (i, 0) is a solution of a retrograde equation of the Hamilton-Jacobi-Bellman

type

d, ¥y, O)/dtl,y . +{v' (), Na(v' (@), =

= ‘}rpier‘ll{d+‘l‘(ﬁo, 8)/dtl s v +(u*(t), sz*(t)>v}=

=—(y(8)— G(8)ity )" M(8) (y(8) - G(8)izy) (4.6)
and it satisfies the boundary condition ¥(it, T) = 0, Viiy € L*(Q). Let v*(t), 8 < ¢ < T achieve the

minimum in (4.5). This function is a solution of the following Fredholm equation of the second kind
with symmetric non-negative kernel

T
No(OV' (1) + [K(2, V' (t)dt=g(t), O<t<T 4.7
0
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where

T
K@, v= | B'@®)C'(s, DG (s)M(s)G(s)C(s, T)B(t)ds

max(¢, 1}

T
g®)=| B*(OC" (s, DG (DM(T)(¥() -
t

—G(‘I:)} C(r, s)IB(s)G‘(s)M(s)y(s)ds)d‘l:, =<t t<T
]

C(s, t) is an almost strong evolution operator corresponding to the operator (D — P()G*(O)M()G(r)),
t = 0 [11]. This leads to the following representation for the function ®

T
W(ity, 0)= ()~ G (1)) M(t) (y(t) - G()u® (8))dt
]

The function u(t), 8 < ¢ < T satisfies a system of differential equations of the form

1°(6) - Du’ (1) = PP OG* M) (y(1) - GO (1)), u®(©) = ity
P°(t)~ DP"(1)— P**(1)D* = -P**(1)G* ()M()G () P° (1) +
+BONy(1)B' (1), P°(8)= P(0)

Let
0, ¥ (i, 8)/30 = lim 57 (W(itg, 0+8)—P(ity, 6)) (4.8)
0¥ (itg, 0)/3ity = Ality, 0) e (I2(Q))* (4.9)

(the last expression is the Fréchet derivative of the function ¥(i%, 8) with respect to iiy). We shall identify
A(ilg, ©) with an element L¥(Q).

Lemma 4.1. If ity is in the domam of definition of the operator D and 8 € [0, T), function (4.8) exists
and is continuous. If ify € L*(Q), 8 e [0, T}, function (4.9) exists and is continuous.

Theorem 4.1. Suppose Assumption 2.1 holds for system (1.1), (1.2). Then, if w* = {u%}, v*(-)} is an
H-estimate of the input based on measurements y(¢), 0 < ¢ < T, and u(¢) is a solution of Eq. (4.3) for
v*(-) = v*(-), then for almost all 6 € [0, 7] one has a retrograde dynamic programming equation

0,'F(1i(6), 6)/06 + (v'(8), N,(0)v*(B))y +
+ (»(6) — G(8)ii(6))'M(8) (¥(8) — G(B)(B)) + (Di(B) + B(O)V'(e) +

+P(0)G*(O)M(8) ((6) — G (8)(8)), 3¥(i(B), 6)/dic) 2@~

5. ADAPTIVE ESTIMATION OF THE INPUT

Let us assume that an estimate z* = {u}, v*(-), £*(-)} has been calculated for system (1.1), (1.2),
based on observations y(t), 0 < ¢t < T. Henceforth, to stress the dependence of the estimate on the
observation interval [0, T], we will write z*(T) = {u§(T), v*(-; T), £*(-; T)}. It is obvious that, generally
speaking, v¥(t; T) = v*(5 T+ 3), E*(t; T) = EX(t; T+ 8)for0 <t < T, 8 > 0, just as u§(7) = u}(7T + ).
Hence, in order to evaluate an estimate z*(T + &) based on the previously derived equations, it is not
enough to know z*(T) and y(t), T < t < T + 8. In what follows we propose procedures for the
approximate calculation of an estimate 2*(T + 8) using only observations y(t), T <t < T + 3 and the
estimate z*(T) or an approximation thereof. In addition to Assumption 2.1, we take V = RP.

By the resuits of Section 4, v*(¢, T) is a solution of Eq. (4.7). Having fixed t = 0, we differentiate
both sides of this equality with respect to T in the interval T > ¢. Letting O(t; T) $(L2(Q)) O=t=<
T denote a solution of the operator equation
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T T
N, (0Q( T+ | [ B'(1)C*(s, )G (s)M(s)G(s)C(s, T)X

Omax (. T}
xB(1)dsQ(t; T)dv=B*()C'(T, ¢)

(which indeed has a unique solution [15]), we find the following equation for v*(z, T), using the function
u*(¢) introduced above in (3.3)

ov*(t; T)/3T = Qt; T)G*(TIM(TY(NT)~G(T)u*(T)), T>¢
v, =0
Similarly, we derive the equation
3Q(r; T)/9T =Q(t; TY(D - A(T)G* (T)M(T)G(T))" -
-Q(5; T)G"(TYM(T)G(T)(P(T) - B(T)), T>1
(5 1)=N3'(1B"(7)

These differential equations are the basis of the following procedure for the approximate calculation
of an estimate for the control. Fix 8 > 0 and construct a uniform partition of the interval [0, 7], of
diameter & > 0 (to fix our ideas, we assume that T = 8K): 1, = 0,¢; = 8,1, =1, + ..., tx = T. Defining
vg = (, we proceed successively to calculate V3,1 for0 <k <K-1, asthe values at r = T of the solution
of the Cauchy problem

V() =0t NG MDY@ -GW (1), 1, <t<T, v(t)=0 (.1

Construct a piecewise-constant function v>(¢), 0 < ¢ < T, putting

vs(t) = VEH’ L <ty (5-2)
Theorem 5.1. The functions v’(-) converge to v*(-; T) as § — 0, in the norm of the space

LY, ).

Remark 5.1. The values of the function v’(f) in the interval T < ¢ < T + & may be found by solving differential
equation (5.1) over the interval 7 < ¢ < T + 3 with initial condition v(7) = 0, or by using a suitable finite-dimensional
approximation

T+8 :
v = NG (1)B (1 )G Ut M ) (8™ | y(mydt—Gleg u* g )
T

It should be emphasized that the evaluation of the function u*(¢), t € (T, T + 3] (with the value of u*(T)
determined on the basis of y(¢), ¢ e [0, T]) requires only a knowledge of the observations y(¢), t € (T, T + 3].

'We now consider the estimate u¥(7). This function, as shown previously, is a solution of the functional
equation (4.1). We will represent ug(7) in the form

. T t
ug(T) = P(TY{ G* ()M(8) (y(t) - G(1)| S(t = 1) B(t)v * (1; T)dr)dt (5.3)
0 0

(G(W)=GE)S(), P(r)=(N, +j'f}*(t)M(t)G(t)dt)"l, 1=0)

Prescribing an arbitrary 8 > 0, we find v ), 0<t=< T Correspondingly, we let u®(T) denote the
expression obtained from (5.3) by replacing v*(t; T) by v¥(x). Differentiating with respect to 7 in the
domain T > 0, we find that

dui¥(TY/ dT = P(TYG* (TYM(T) ()(T) - G(T)ug>(T) - G(TH)V(T))
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ul(0)=0
dP(T)! dT = -P*(T)G*(T)M(T)G(T)P(T), B(0)=

dV(T)! dT - DV(T) = B(T)¥*(t), V(0)=0

Theorem 5.2. For any T > 0, the functions uy**(T) converge as § — 0 to uy*(T) in the norm of
LY.

Remark 5.2. For stationary observation operators G(), i.e. G(t) = G, 0 < ¢ [9, 10, 17], the operator 5(t) admits
of an effective computational form. Consider, for example, spatially averaged observations

Gu(,, t)=col[[g (x)u(x, )dx, ..., [gn(X)u(x, Hdx] 549
Q Q

where g; = g1(x), . . . , 8» = gm(x) are given functions which are square-integrable over Q. Then
Gu(, H=col[[§(x, Du(x, Ddx, ..., [Gn(x, Dulx, 1)dx]
o Q
where g1(t) = g1(x, 1), . . ., 8m(t) = gm(x, t) are solutions of the Cauchy problems

§:(D-Dg(1)=0, >0, 30)=g;. i=l, .. m

6. EXAMPLE

In addition to Assumption 2.1, we assume the following conditions.
Assumption 6.1. Suppose that
1. the initial state 1 of system (1.1) is known,

2.V=R",
3. B(¢) =B,t € [0, T], where

Bv =b(x)v; +..+b,(x)v,,, veEV, xeQ

b e HX(Q), i=1, .., m,

4. the observation operator is such that G(t) G, where G is of the form (5.4),and g, € H'(Q), k = 1,.
5. the observation noise &(f) in Eq. (1.1) is an element of the space HL(0, T).
With these assumptions, we obtain an equation for v(-)

Y(6)-GDu(, t; v()=GBv(t)+n(1), 0=<¢=<T (6.1)

X =y, nO=E@)

Here D is the operator mtroduced in Section 3. By Remark 2 2, we can now determine an H,-estimate for the
control as a function v*(-) € L2(0, T) such that the quantity «’, guaranteeing the inequality

T
ly ()= v* ()12 <k2! W (O Ny () +n(t) M(r)n(r))dt

2,1
for all v(- ), n(-) € L2,(0, T) satisfying (6.1), is the least possible. This function, as is easily shown, minimizes the
functional

T
J =] @ @ N@w @) +(Y ()= GDu, 1, v*)-
0

—GBv *(1)Y M(1)(Y(2) - GDu(., t; v*)~GBv* (1)), v (e l2(0, T)

Put M(t) = E, N(t) = ¢E, where € > 0 and E is the m x m identity matrix. We put v*(-) = v¥(-) to emphasize
the dependence of the estimate on the choice of the matrices M(¢) and N(r).
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Theorem 6.1. If the operator GB is invertible on R™, the limit lim v¥(-) = v *(-) as € — +0 exists. This function

¥ *(-) is the unique solution of the equation

Y(1)-GDu(, t;. %" )=GBv* (1), t>0

Note that it is precisely this function v *(-) that was considered in [17, 19] as an estimate of the control,

while the quantities v*(; T + 8), T < < T + 3 were determined there from the equation Y(¢) - GDu(-, f; v*) =
GBv*(t), T <t < T + §, where the initial condition for u(x, T) was u(-, T) = u(-, T; v*(-; T)). This procedure
is analogous to that described in Remark 5.1 if one replaces u*(f) in the latter by u(-, T; v°).

This research was supported financially by the Russian Foundation for Basic Research (97-01-01003,

96-01-00050).

10.
. CURTAIN, R. E and PRITCHARD, A. 1., Infinite Dimensional Linear Systems Theory. Springer, Berlin, 1978.
12.
13.
14.
15.
16.
17.
18.

19.

REFERENCES

. CAZENAVE, T and HARAUX, A., Introduction aux Probiémes d'Evolution Semilinéaires. Mathémtiques et Applications.

1. Ellipses, Paris, 1990.

. LADYZHENSKAYA, O. A,, SOLONNIKOV, V. A. and URALTSEVA, N. N,, Linear and Quasi-linear Equations of Parabolic

Type. Nauka, Moscow, 1967.

. ZUAZUA, E,, Finite dimensional null controllability for the semilinear heat equation. J. Math. Pures et Appl., 1997, 76, 3,

237-264.

. FATTORINI, H. O., Optimal control problems for distributed parameter systems governed by semilinear parabolic equations

in L' and L* spaces. In Optimal Control of Partial Differential Equations (Irsec, 1990). Lecture Notes in Control and Information
Sciences 149. Springer, Berlin, 1991, 68-80.

. BARAS, J. S. and KURZHANSKII, A. B., Nonlinear filtering: The set-membership (bounding) and the H-infinity techniques.

In Proc. 3rd IFAC Symposium on Nonlinear Control Systems Design. Pergamon Press, Oxford, 1995, 409-418.

. BASAR, T. and BERNHARD, P, H*-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach.

Springer, Berlin, 1991.

. BENSOUSSAN, A.,, DA PRATO, G., DELFOUR, M. C. and MITTER, S. K., Representation and Control of Infinite

Dimensional Systems. Birkhaiiser, Boston. Vol. 1, 1992; Vol. 2, 1993.

. KURZHANSKII, A. V., Guaranteed estimation of distributed processes according to the results of observations. Vestnik

Mosk. Gos. Univ., Ser. 15; Vychisl. Matematika Kibernetika, 1995, 1, 33-40.

. KURZHANSKI]I, A. B. and and KHAPALOV, A. Yu., An observation theory for distributed-parameter systems. J. Math.

Sys., Estimation and Control, 1991, 1, 389-440.
SIVERGINA, 1. E, Invertibility and observability of evolution systems. Dokl. Ross. Akad. Nauk, 1996, 351, 3, 304-308.

LIONS, J. -L., Controle Optimal de Systémes Gouvernés par des Equations aux Derivées Partielles. Gauthier-Villars, Paris,
1968.

FLEMING, W. H. and SONER, H. M., Controlled Markov Processes and Viscosity Solutions. Springer, New York 1993.
LIONS, J. -L., Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite
dimensions, Pt. I, Acta Math., 1988, 161, 34, 243-278; Pt. I1, Lecture Notes in Mathematics, 1988, 1390, 147-170; Pt. 111, J.
Funct. Anal., 1989, 86, 1, 1-18.

KANTOROVICH, L. V. and AKILOV, G. P, Functional Analysis. Nauka, Moscow, 1984.

JAMES, M. R. and BARAS, J. S., Partially observed differential games, infinite-dimensional Hamilton-Jacobi-Isaacs
equations, and nonlinear H,, control. SIAM J. Control and Optimiz., 1996, 34, 4, 1342-1364.

KRYAZHIMSKII, A. V., MAKSIMOV, V. 1. and SAMARSKAIA, E. A, On estimation of forcing functions in parabolic
systems. Internat. Inst. Systems Anal. Working Paper WP-95-75, Laxenburg, 1995.

OSIPOV, Yu. S. and KRYAZHIMSKI], A. V,, Inverse Problems of Ordinary Differential Equations: Dynamical Solutions. Gordon
& Breach, Amsterdam, 1995.

KRYAZHIMSKII, A. V., MAKSIMOV, V. L. and OSIPOV, Yu. S., The reconstruction of external perturbations in parabolic
equations. Zh. Vychisl. Mat. Mat. Fiz., 1997, 37, 3, 291-301.

Translated by D.L.



